Mkt-energo.ru

Город Мастеров
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Теплопроводность стен расчет

Расчет теплопроводности стены

Каждый, кто строит дом или же собирается проводить ремонт, задается вопросом: какой толщины делать стены, какую теплоизоляцию и какой утеплитель лучше всего использовать.

Именно ответы на эти вопросы позволят сделать любой дом или квартиру уютными, комфортными и удобными для проживания.

Опять же, использование некачественных материалов и в недостаточных количествах, игнорирование утепления, как такового, могут привести к весьма печальным последствиям.

В таком доме просто будет сложно жить как в жару, так и в морозы. Температура в комнатах будет мало отличаться от температуры на улице.

Поэтому следует выяснить, какой же толщины должна быть теплоизоляция конкретно для вашего случая.

Как лучше поступить

На сегодняшний день это можно сделать самостоятельно: произвести необходимые расчеты, выяснить оптимальные материалы для работы и самостоятельно их установить.

Можно предпочесть работу заказу крупной фирме, которая сможет за отдельную плату совершить точный расчет, подобрать материалы и приступить к их монтажу.

Конечно, в случае, если вы все сделаете сами, претензии выдвигать будет некому.

В случае с фирмой, вы сможете пожаловаться на некачественную, недобросовестную работу или же когда требуемый эффект от произведенных работ не был достигнут.

Для расчет теплопроводности стены можно воспользоваться специальными программами, специализированными онлайн-калькуляторами, которые помогут вам получить нужные цифры.

Или же вы сможете это сделать самостоятельно. Многие заблуждаются, думая, что сами не в состоянии произвести расчеты, подсчитать, сколько теплоизоляции для работы будет необходимо на комнату, квартиру или же дом. Это сделать необычайно просто, ведь рассчитать толщину необходимой теплоизоляции можно довольно просто: на всех материалах производители указывают коэффициент теплопроводности.

Этикетка с коэффициентом

В чем необходимость расчета теплопроводности и монтажа теплоизоляции

Как уже говорилось, на это есть ряд причин:

  • отсутствие или недостаточность теплоизоляции приведет к промерзанию стен;
  • есть вероятность переноса так называемой точки росы, что, в свою очередь, вызовет появление конденсата на стенах, добавит излишнюю влажность в помещениях;
  • в жаркое время в помещениях будет хуже, чем под ярким солнцем на улице; в таких домах будет жарко, душно и неуютно.

Опять же, приведенные выше причины принесут вам и новые проблемы: та же влажность будет способствовать порче как используемых внутри помещения строительных материалов, так и мебели, техники. Это, в свою очередь, заставит вас тратить деньги на ремонт, обновление, приобретение новых вещей. Пример подобного можно с легкостью увидеть ниже.

Влага и роса в квартире

Так что теплоизоляция – это залог сохранности ваших денег в дальнейшем.

Как рассчитывать толщину теплоизоляции

Чтобы просчитать необходимую толщину, следует знать величину теплосопротивления, которая является постоянной, значение имеет разное, в зависимости от географического положения, то есть разное для каждого отдельно взятого района. За основу возьмем следующие показатели: теплосопротивление стен – 3.5м 2 *К/Вт, а потолка – 6м 2 *К/Вт. Первое значение назовем R1, а второе, соответственно, R2.

При расчетах стен или же потолка, или же пола, состоящих из более чем одного слоя, следует просчитать теплосопротивление каждого из них, а затем суммировать.

Соответственно, необходимая толщина теплоизоляции, ее слоя, будет получена путем следующих манипуляций и при помощи формул:

R=p/k, где pявляется толщиной слоя, а k – коэффициентом теплопроводности материала, который можно узнать у производителя.

Опять же, не забывайте, если есть несколько слоев, то по данной формуле следует просчитать каждый, и затем полученные результаты суммировать.

Пример таковых расчетов

Ничего сложного в этом процессе нет, можно с легкостью провести расчет для любого материала. В качестве примера мы можем взять расчет для дома из кирпича.

Скажем, толщина измеряемых стенок будет составлять 1.5 длины кирпича, а в качестве теплоизоляции решим использовать минвату.

Кирпич и минвата

Итак, нам требуется теплосопротивление стены не меньше 3.5. Для начала просчета нам потребуется узнать текущее тепловое сопротивление данной стены из кирпича.

Толщина составляет около 38 сантиметров, коэффициент теплопроводности составляет 0,56.

Соответственно, 0,38/0,56 = 0,68. Чтобы достигнуть показателя в 3.5, мы отнимем от него полученный результат (нам нужно 2,85 метр квадратный * К/Вт).

Теперь мы сделаем расчет толщины теплоизоляции, как уже говорилось выше, минеральной ваты: 2,85*0,045=0,128

Позволим себе немного округлить результат и получим следующее: при необходимости утеплить кирпичную стену, толщиной в полтора кирпича, нам потребуется толщина теплоизоляционного материала 130мм, при условии, что мы будем использовать минеральную вату. Если учитывать предстоящие внутренние и внешние работы, как отделочные, так и декоративные, можно позволить себе слой минваты в 100мм. Как видите, ничего сложного.

Что еще даст такой расчет

Используя такой расчет, вы сможете сравнивать различные типы утепления и теплоизоляции, сможете выбрать наиболее эффективный при наименьшем слое.

Если у вас проблема в пространстве, если же вы хотите сэкономить, то подобная работа позволит вам путем нехитрых манипуляций быстро выяснить, какой материал будет вам обходиться дешевле.

Если вы еще на этапе планировки дома, то сможете выяснить, что обойдется вам дешевле и менее трудоемко. Это может быть увеличение толщины кирпичной кладки, использование других типов теплоизоляционных материалов или же использование других строительных материалов для возведения стены, скажем, вместо кирпича использовать блоки и т.д.

Стена из блоков

Многие ленятся делать расчеты самостоятельно, в этом случае можно легко позволить себе воспользоваться калькуляторами, которые предлагаются в сети на многих страницах.

Здесь вы найдете массу шаблонов и заготовок, практически вся информация собрана в справочниках, вам нужно будет подставлять только тип строительных материалов, регион проживания и показатель толщины. В этом случае все вычисления будут происходить очень быстро и легко.

Онлайн калькулятор

Но в данном случае высока вероятность того, что на том или ином сайте жульничают: пытаются выставить материал, которым торгуют, в лучшем свете. В таком случае вероятна ошибка в расчетах, которая может дорого вам обойтись.

Не стоит бояться самостоятельных расчетов, для этого вам понадобятся только ручка, бумага и калькулятор.

Вы легко сможете в любой момент перепроверить свои расчеты или же показать их специалисту. Консультация со знакомым строителем выйдет гораздо дешевле, чем найм профессиональной компании.

Снова-таки, выбирая материалы, просчитывая необходимую толщину и цену на них, учитывайте и другие полезные свойства, которые вам могут быть интересны.

Например, пожаробезопасность, звукоизоляцию, водо- или влагонепроницаемость. Например, звукоизоляцией и теплоизоляцией обладает стекловата.

Стекловата

Да, к сожалению, такие материалы будут выходить несколько дороже, но все же, разница по цене в 10-20% с учетом того, что вы получите, скажем, не только теплоизоляцию, но еще и звукоизоляцию, стоит назвать хорошей покупкой и удачным решением.

Видео – расчет теплопроводности стены

На данном видео можно воочию увидеть, как производится расчет теплопроводности стены с помощью специализированной программы.

Расчет теплопроводности стены

Чтобы определить, какой толщины возводить стену при постройке дома, нужно научиться рассчитать теплопроводность стен. Этот показатель зависит от используемых строительных материалов, климатических условий.

Нормы толщины стен в южных и северных регионах будут различаться. Если не сделать расчет до начала строительства, то может оказаться так, что в доме зимой будет холодно и сыро, а летом слишком влажно.

Чтобы этого избежать, нужно высчитать коэффициент сопротивления теплопередачи материала для постройки стен и утеплителя.

Для чего нужен расчет

Чтобы сэкономить на отоплении и способствовать созданию здорового микроклимата в помещении, нужно правильно рассчитать толщину стен и утеплительных материалов, которые будем использовать при строительстве. По закону физики, когда на улице холодно, а в помещении тепло, то через стену и кровлю тепловая энергия выходит наружу.

Если неправильно рассчитать толщину стен, сделать их слишком тонкими и не утеплить, это приведет к негативным последствиям:

  • зимой стены будут промерзать;
  • на обогрев помещения будут затрачиваться значительные средства;
  • сместиться точка росы, что приведет к образованию конденсата и влажности в помещении, заведется плесень;
  • летом в доме будет так же жарко, как и под палящим солнцем.

Чтобы избежать этих неприятностей, нужно перед началом строительства просчитать показатели теплопроводности материала и определиться, какой толщины возводить стену, и каким теплосберегающим материалом ее утеплять.

От чего зависит теплопроводность

Проводимость тепла рассчитывают исходя из количества тепловой энергии, проходящей через материал площадью 1 кв. м. и толщиной 1 м при разнице температур внутри и снаружи в один градус. Испытания проводят в течение 1 часа.

Проводимость тепловой энергии зависит от:

  • физических свойств и состава вещества;
  • химического состава;
  • условий эксплуатации.

Теплосберегающими считаются материалы с показателем менее 17 ВТ/ (м·°С).

Выполняем расчеты

Расчет толщины стен по теплопроводности является важным фактором в строительстве. При проектировании зданий архитектор рассчитывает толщину стен, но это стоит дополнительных денег. Чтобы сэкономить, можно разобраться, как рассчитать нужные показатели самостоятельно.

Скорость передачи тепла материалом зависит от компонентов, входящих в его состав. Сопротивление передачи тепла должно быть больше минимального значения, указанного в нормативном документе «Тепловая изоляция зданий».

Рассмотрим, как рассчитать толщину стены в зависимости от применяемых в строительстве материалов.

δ это толщина материала, используемого для строительства стены;

λ показатель удельной теплопроводности, рассчитывается в (м2·°С/Вт).

Читать еще:  Расчет нагрузки на крышу

Когда приобретаете стройматериалы, в паспорте на них обязательно должен быть указан коэффициент теплопроводности.

Значения параметров для жилых домов указаны в СНиП II-3-79 и СНиП 23-02-2003.

Допустимые значения в зависимости от региона

Минимально допустимое значение проводимости тепла для различных регионов указано в таблице:

Показатель теплопроводностиРегион
12 м2•°С/ВтКрым
22,1 м2•°С/ВтСочи
32,75 м2•°С/ВтРостов—на—Дону
43,14 м2•°С/ВтМосква
53,18 м2•°С/ВтСанкт—Петербург

У каждого материала есть свой показатель проводимости тепла. Чем он выше, тем больше тепла пропускает через себя этот материал.

Показатели теплопередачи для различных материалов

Величины проводимости тепла материалами и их плотность указаны в таблице:

МатериалВеличина теплопроводностиПлотность
Бетонные1,28—1,512300—2400
Древесина дуба0,23—0,1700
Хвойная древесина0,10—0,18500
Железобетонные плиты1,692500
Кирпич с пустотами керамический0,41—0,351200—1600

Теплопроводность строительных материалов зависит от их плотности и влажности. Одни и те же материалы, изготовленные разными производителями, могут отличаться по свойствам, поэтому коэффициент нужно смотреть в инструкции к ним.

Расчет многослойной конструкции

Если стену будем строить из различных материалов, допустим, кирпич, минеральная вата, штукатурка, рассчитывать величины следует для каждого отдельного материала. Зачем полученные числа суммировать.

В этом случае стоит работать по формуле:

Rобщ= R1+ R2+…+ Rn+ Ra, где:

R1-Rn- термическое сопротивление слоев разных материалов;

Ra.l– термосопротивление закрытой воздушной прослойки. Величины можно узнать в таблице 7 п. 9 в СП 23-101-2004. Прослойка воздуха не всегда предусмотрена при постройке стен. Подробнее о расчетах смотрите в этом видео:

На основании этих подсчетов можно сделать вывод о том, можно ли применять выбранные стройматериалы, и какой они должны быть толщины.

Последовательность действий

Первым делом, нужно выбрать строительные материалы, которые будете использовать для постройки дома. После этого рассчитываем термическое сопротивление стены по описанной выше схеме. Полученные величины следует сравнивать с данными таблиц. Если они совпадают или оказываются выше, хорошо.

Если величина ниже, чем в таблице, тогда нужно увеличить толщину утеплителя или стены, и снова выполнить подсчет. Если в конструкции присутствует воздушная прослойка, которая вентилируется наружным воздухом, тогда в учет не следует брать слои, находящиеся между воздушной камерой и улицей.

Как выполнить подсчеты на онлайн калькуляторе

Чтобы получить нужные величины, стоит ввести в онлайн калькулятор регион, в котором будет эксплуатироваться постройка, выбранный материал и предполагаемую толщину стен.

В сервис занесены сведения по каждой отдельной климатической зоне:

  • t воздуха;
  • средняя температура в отопительный сезон;
  • длительность отопительного сезона;
  • влажность воздуха.

Температура и влажность внутри помещения – одинаковы для каждого региона

Сведения, одинаковые для всех регионов:

  • температура и влажность воздуха внутри помещения;
  • коэффициенты теплоотдачи внутренних, наружных поверхностей;
  • перепад температур.

Чтобы дом был теплым, и в нем сохранялся здоровый микроклимат, при выполнении строительных работ нужно обязательно выполнять расчет теплопроводности материалов стены. Это несложно сделать самостоятельно или воспользовавшись онлайн калькулятором в интернете. Подробнее о том, как пользоваться калькулятором, смотрите в этом видео:

Для гарантировано точного определения толщины стен можно обратиться в строительную компанию. Ее специалисты выполнят все необходимые расчеты согласно требованиям нормативных документов.

Как рассчитать теплопроводность стен дома

Как правило, теплосопротивление стен различается по регионам, и утепление помещений необходимо выполнять, учитывая климат. Ведь именно от хорошей теплоизоляции зависит температура внутри помещения и самих стен, а также то, как долго прослужит конструкция дома.

Каким теплотехническим требованиям должны соответствовать стены?

Все стены должны отвечать следующим теплотехническим требованиям:

  • Материалы, из которых изготовлены стены, должны иметь хорошие теплозащитные свойства.
  • Внутренняя часть стены должна иметь температуру, сходную с температурой воздуха в помещении, чтобы не образовывался конденсат. Допустимый предел температурных различий – от 4 до 12 градусов.
  • Стены должны быть максимально устойчивыми к влажности.

Также материалы не должны пропускать ветер и сквозняк.

Надо учитывать, что тип материала утепления напрямую зависит от того, из чего изготовлена конструкция помещения.

Следующий немаловажный фактор – это количество утеплителя, а также его толщина. Толщина рассчитывается исходя из свойств материала постройки.

Характеристика теплозащитных свойств

Теплозащитные свойства стен напрямую зависят от теплопроводности материалов, которыми они были утеплены. Уровень теплопроводности равен объему тепла, проходящему за один час через один квадратный метр защитного материала толщиной в метр.

Самая низкая теплопроводность – у минеральной ваты, угольной ваты, пенополиуретана и других подобных материалов.

Но выбор утеплителя обуславливается и материалом возведения стен. Например, для деревянных домов подойдет минеральная или угольная вата. Обусловлено это тем, что они оказывают большое сопротивление холоду, но при этом позволяют дышать конструкции.

Для утепления кирпичных стен вполне подойдут пенопласт, пеноплекс, пенополиуретан и другие похожие по характеристикам утеплители.

Как выполнить расчет теплопроводности стены

При выборе утеплителя для стен важно учитывать, в какой температурной зоне находится помещение, а также теплоизоляционные характеристики материала стен. Большая часть территории России, за исключением некоторых областей, находится в переменчивой климатической зоне.

Для подобных температурных режимов коэффициент сопротивления теплопередач должен быть равен трем или немного больше трех. Если стены построены из кирпича и толщина составляет не более 50 см, то коэффициент сопротивления теплопередачи стен будет составлять не более, чем 0,7.

Чтобы стены имели соответствующие нормам теплоизоляционные характеристики, потребуется утеплитель с коэффициентом сопротивления теплоотдачи не меньше 2,6. Этому показателю соответствует пенопласт толщиной до 10 см. Очень важно учитывать и теплопотери через стены.

Как рассчитать теплопотери через стены

В готовой системе теплопотери происходят на стыках между листами утеплителя, через отверстия для дюбелей, крепящих его к стене. Также теплопотери могут возникать, например, в краевых зонах, а также в местах, где теплоизолятор примыкает к кровле.

Они могут возникнуть на оконных и дверных откосах, так как в большинстве случаев там невозможно смонтировать утеплитель нужной толщины. В лучшем случае, туда можно вмонтировать пенополистирол, толщина которого составляет не более 5 см.

К тому же структура части стен дома характеризуется повышенной влажностью – это кухня, ванная комната и санузлы. Влага снижает теплоизоляционные характеристики большинства утеплителей как минимум на 20%.

Поэтому необходимо внести поправку в расчеты к проектной толщине утеплителя – на 100 мм добавить дополнительных 20 мм. Благодаря увеличению толщины утеплителя происходит компенсация вышеперечисленных потерь тепла.

Если толщина стен меньше 50 см, и они возведены из стандартных строительных материалов, то толщина утеплителя будет составлять не менее 12 см. Только при таких условиях утепление даст желаемый результат и стены будут соответствовать современным теплоизоляционным нормам.

Как посчитать теплопотери на калькуляторе онлайн

Для тех, у кого нет возможности или желания самостоятельно считать все параметры наружных и внутренних коэффициентов, существует калькулятор. Он способен рассчитать различные значения, необходимые для достижения нужного температурного эффекта для той или иной конструкции.

Кроме того, калькулятор может рассчитать коэффициент сопротивления конструкции. Рассмотрим каждый пример подробнее.

Для того чтобы рассчитать к.с. наружных или внутренних стен, введите в калькулятор следующие параметры: толщину наружных или внутренних утеплителей, толщину стены, на которую они установлены, а также среднюю норму температурного режима.

После того как все данные введены, можно нажимать кнопку «считать» и калькулятор выдаст достоверный результат. То же самое делается в примере, где необходимо считать значения для определения ширины наружных и внутренних утеплителей.

Для того чтобы правильно выбрать материал для поддержания нормальной температуры стен, тщательно высчитывайте значения коэффициента сопротивления. Сделать это можно как самостоятельно, так и при помощи калькулятора.

Кроме того, материал для утепления какой-либо строительной конструкции напрямую зависит от сырья, из которого изготовлена эта конструкция. Поэтому прежде чем начать считать коэффициенты, правильно подберите сочетающиеся между собой варианты.

Теплотехнический калькулятор

λA =Вт/(м °С)
λB =Вт/(м °С)
Плотностькг/м 3
Кратностьмм
Паропроницаниемг / (м·ч·Па)
Δw%
Шаг каркаса, sмм
Ширина элемента каркаса, aмм
λkА каркасаВт/(м °С)
λkБ каркасаВт/(м °С)
Шаг каркаса, sмм
Ширина элемента каркаса, aмм
λkА каркасаВт/(м °С)
λkБ каркасаВт/(м °С)
  • Выбрать другой материал
  • Переименовать материал
Диаметр выреза, dмм
Расстояние между вырезами, sмм
Толщина плиты, δмм
Размер, aмм
Размер, hмм
Толщина листа, δмм

Пожалуйста, выберите материал.

Что нужно вычислить?

Шаг №2 — Вид конструкции

Для какой части здания производится расчёт?

Шаг №1 — Тип расчёта Шаг №3 — Климат

Где находится здание?

Шаг №2 — Тип конструкции Шаг №4 — Тип помещения

Каково функциональное назначение здания и помещения?

Шаг №3 — Климат Шаг №5 — Структура

Структура теплоизолирующей конструкции

Недавно вы изменили тип конструкции. Хотите ли вы загрузить типовой пример для него?

Шаг №4 — Тип помещения Шаг №6 — Результаты расчёта

Результаты расчёта

Вернуться к началу

Расчёт термических сопротивлений

Расчёт ориентировочного термического сопротивления утеплителя

Расчёт ориентировочной толщины слоя утеплителя из условия:

Расчётный перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции:

Температуру внутренней поверхности — Tв, °С, ограждающей конструкции (без теплопроводного включения), следует определять по формуле:

Температуру tx, °С, ограждающей конструкции в плоскости, соответствующей границе слоя x, следует определять по формуле:

Москва Преображенская площадь д.8
+7 (495) 228-81-10

Санкт-Петербург 10-я Красноармейская улица, дом 22, литер А, 3-й этаж, Бизнес-центр «Келлерманн-центр»
+7 (812) 384-17-18

Нижний Новгород ул. М.Горького, д.195, 9 этаж
+7(831) 202-02-81

Ростов-на-Дону бульвар Комарова, д.28е, офис 302
+7 (918) 509 77 70

Екатеринбург ул. Сибирский тракт, 12, строение №2 , офис 301/1. БЦ «Квартал»
+7 (343) 344-37-33

Новосибирск ул.Нарымская, д.27, 12 этаж
+7 (913) 480-94-50

Расчет толщины стен из различных материалов

Для чего подбирают определенную толщину стены дома?

Естественно для обеспечения необходимых условий проживания:

— прочности и устойчивости;
— её теплотехнических характеристик;
— комфортности проживания в помещении со стенами из данного материала.

Согласно СНИПу 23-02-2003 нормативное значение сопротивления теплопередаче внешней стены дома зависит от региона. В таблице необходимое сопротивление теплопередаче наружней стены в Красноярске будет 4,84 м2·°C/В.

Вычисляем реальное сопротивление теплопередачи стены дома

Значение коэффициента теплопередачи стен зависит от типа и толщины каждого отдельно взятого материала, используемого для их возведения. Для определения этого коэффициента используют показатель Λ — W/(m²·K), т.е нужно разделить толщину материала (м) на коэффициент теплопроводности.

Пример:
Определим коэффициент теплопередачи наружней стены из 3D-панелей

Пенополистирол ПСБ-С-25 — 300 мм

Цементная штукатурка — 250 мм

1. В первую очередь следует определить коэффициенты теплопроводности применяемых материалов. Выбираем из таблицы:
пенополистирол ПСБ-С25 — 0,038 Вт/м*К
штукатурка цементная — 0,9 Вт/м*К

2. Теперь определяем коэффициенты сопротивления теплопередачи по формуле:

R =D/λ, где D — толщина слоя в м; λ — коэффициент теплопроводности W/(m²·K) взятый из таблицы

0,30 / 0,038 = 7,89
0,25 / 0,9 = 0,28

Наименование материалаТолщина материала, мКоэффициент теплопроводности, Вт/м*ККоэффициент сопротивление теплопередачи, м2 °С/Вт
Пенополистирол ПСБ-С250,300,0387,89
Штукатурка цементная0,250,90,28

3. Теперь просуммируем полученные величины и узнаем общий коэффициент сопротивление теплопередачи наружней стены 7,89 + 0,28 = 8,17 W/(m²·K)

Коэффициент сопротивление теплопередачи наружной стены из 3D-панелей 8,17 W/(m²·K) Рекомендуемое значение для Красноярска 4,84 (из таблицы), таким образом стена из 3D-панелей не только удовлетворяет «строгому» СНиП 23-02-2003, но и превосходит этот показатель, что гарантирует комфортное проживание в таком доме и позволяет экономить ваши деньги на отоплении и кондиционировании.

Определяем толщину стены из других строительных материалов что бы она соответствовала коэффициенту сопротивление теплопередачи наружней стены 8,17 W/(m²·K), как в 3D-панелях.

Используем формулу: D=λ*R, где
D — толщина слоя в м;
λ — коэффициент теплопроводности, W/(m²·K) взятый из таблицы;
R — Коэффициент сопротивление теплопередачи, м2 °С/Вт (в нашем случае это 8,17)

Наименование материалаКоэффициент теплопроводности, Вт/м*КТолщина стены, м
3D-панель0,55
Липа, береза, клен, дуб (15% влажности)0,151,23
Керамзитобетон0,21,63
Пенобетон 1000 кг/м30,32,45
Сосна и ель вдоль волокон0,352,86
Дуб вдоль волокон0,413,35
Кладка из кирпича на цементно-песчасном растворе0,877,11
Железобетон1,713,89

Мы видим из таблицы, что при одинаковом коэффициенте сопротивление теплопередачи 8,17 м2 °С/Вт толщина стен из различных строительных материалов разная, что влияет на размеры и стоимость дома.

Толщина стен из 3D-панелей 550 мм, а если взять кирпич без утеплителя то нужно стоить стену толщиной 7110 мм.

ТЕПЛОТЕХНИЧЕСКИЙ РАСЧЁТ СТЕНЫ — полнотелый силикатный кирпич 640 мм.

Теплотехнический расчёт

Теплотехнический расчет стены.

Цель теплотехнического расчета — вычислить толщину утеплителя при заданной толщине несущей части наружной стены, отвечающей санитарно-гигиеническим требованиям и условиям энергосбережения. Иными словами – у нас есть наружные стены толщиной 640 мм из силикатного кирпича и мы собираемся их утеплить пенополистиролом, но не знаем какой толщины необходимо выбрать утеплитель, чтобы были соблюдены строительные нормы.

Теплотехнический расчет наружной стены здания выполняется в соответствии со СНиП II-3-79 «Строительная теплотехника» и СНиП 23-01-99 «Строительная климатология».

Теплотехнические показатели используемых строительных материалов (по СНиП II-3-79*)

Теплоусвоения (при периоде 24 ч)

1- штукатурка внутренняя (цементно-песчаный раствор) — 20 мм

2- кирпичная стена (силикатный кирпич) — 640 мм

3- утеплитель (пенополистирол)

4- тонкослойная штукатурка (декоративный слой) — 5 мм

При выполнении теплотехнического расчёта принят нормальный влажностный режим в помещениях — условия эксплуатации («Б») в соответствии с СНиП II-3-79 т.1 и прил. 2, т.е. теплопроводность применяемых материалов берём по графе «Б».

Вычислим требуемое сопротивление теплопередаче ограждения с учетом санитарно-гигиенических и комфортных условий по формуле:

где tв – расчётная температура внутреннего воздуха °С, принимаемая в соответствии с ГОСТ 12.1.1.005-88 и нормами проектирования

соответствующих зданий и сооружений, принимаем равной +22 °С для жилых зданий в соответствии с приложением 4 к СНиП 2.08.01-89;

tn – расчётная зимняя температура наружного воздуха, °С, равная средней температуре наиболее холодной пятидневки, обеспеченностью 0,92 по СНиП 23-01-99 для г. Ярославль принимается равной -31°С;

n – коэффициент, принимаемый по СНиП II-3-79* (таблица 3*) в зависимости от положения наружной поверхности ограждающей конструкций по отношению к наружному воздуху и принимается равным n=1;

Δ t n – нормативный и температурный перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции – устанавливается по СНиП II-3-79* (таблица 2*) и принимается равным Δ t n =4,0 °С;

αв — коэффициент теплоотдачи внутренней поверхности ограждающих конструкций принимается по по СНиП II-3-79* (таблица 4*) и принимается равным αв = 8,7 Вт/м 2 *°С.

R тр = (22- (-31))*1 / 4,0* 8,7 = 1,52

Определим градусо-сутки отопительного периода по формуле:

где tв — то же, что и в формуле (1);

tот.пер — средняя температура, °С, периода со средней суточной температурой воздуха ниже или равной 8 °С по СНиП 23-01-99;

zот.пер — продолжительность, сут., периода со средней суточной температурой воздуха ниже или равной 8 °С по СНиП 23-01-99;

Определим приведенное сопротивление теплопередаче Rо тр по условиям энергосбережения в соответствии с требованиями СНиП II-3-79* (таблица 1б*) и санитарно-гигиенических и комфортных условий. Промежуточные значения определяем интерполяцией.

Сопротивление теплопередаче ограждающих конструкций (по данным СНиП II-3-79*)

Сопротивление теплопередаче ограждающих конструкций R(0) принимаем как наибольшее из значений вычисленных ранее:

R тр = 1,52 тр = 3,41, следовательно R тр = 3,41 (м 2 *°С)/Вт = R.

Запишем уравнение для вычисления фактического сопротивления теплопередаче R ограждающей конструкции с использованием формулы в соответствии с заданной расчетной схемой и определим толщину δx расчётного слоя ограждения из условия:

где δi – толщина отдельных слоёв ограждения кроме расчётного в м;

λi – коэффициенты теплопроводности отдельных слоев ограждения (кроме расчётного слоя) в (Вт/м*°С) принимаются по СНиП II-3-79* (приложение 3*) – для этого расчёта таблица 1;

δx – толщина расчётного слоя наружного ограждения в м;

λx – коэффициент теплопроводности расчётного слоя наружного ограждения в (Вт/м*°С) принимаются по СНиП II-3-79* (приложение 3*) – для этого расчёта таблица 1;

αв — коэффициент теплоотдачи внутренней поверхности ограждающих конструкций принимается по по СНиП II-3-79* (таблица 4*) и принимается равным αв = 8,7 Вт/м 2 *°С.

αн — коэффициент теплоотдачи (для зимних условий) наружной поверхности ограждающей конструкции принимается по по СНиП II-3-79* (таблица 6*) и принимается равным αн = 23 Вт/м 2 *°С.

Термическое сопротивление ограждающей конструкции с последовательно расположенными однородными слоями следует определять как сумму термических сопротивлений отдельных слоев.

Для наружных стен и перекрытий толщина теплоизоляционного слоя ограждения δ x рассчитывается из условия, что величина фактического приведённого сопротивления теплопередаче ограждающей конструкции R должна быть не менее нормируемого значения R тр , вычисленного по формуле (2):

Раскрывая значение R , получим:

R = 1/23 + (0,02/0,93 + 0,64/0,87 + 0,005/0,93) + δx/0,041 + 1/8,7

Исходя из этого, определяем минимальное значение толщины теплоизоляционного слоя

δx = 0,041*(3,41- 0,115 — 0,022 — 0,74 — 0,005 — 0,043)

Принимаем в расчёт толщину утеплителя (пенополистирол) δx = 0,10 м

Определяем фактическое сопротивление теплопередаче рассчитываемых ограждающих конструкций R , с учётом принятой толщины теплоизоляционного слоя δx = 0,10 м

R = 1/23 + (0,02/0,93 + 0,64/0,87 + 0,005/0,93 + 0,1/0,041) + 1/8,7

Условие R0 ≥ R тр соблюдается, R = 3,43 (м 2 *°С)/Вт R тр =3,41 (м 2 *°С)/Вт

Теплоизоляция (утеплитель пенополистирол с коэффициентом теплопроводности 0,041) толщиной 100 мм при толщине несущей части наружной стены из силикатного кирпича толщиной 640 мм на цементно–песчаном растворе соответствует санитарно-гигиеническим требованиям и условиям энергосбережения.

При эксплуатации стены без утеплителя «точка росы» возникает в толще стены. Стена просто отсыревает и не аккумулирует тепло. Поверхность стены в помещении при отрицательной температуре — холодная, что приводит к образованию на стене плесени и конденсата.

При эксплуатации стены с утеплителем «точка росы» не возникает в стене. В некоторых случаях — при повышении влажности внутри помещения и понижении температуры снаружи точка росы появится в утеплителе ближе к наружной стороне — со временем выветривается.

А вот что будет происходить в стене при внутреннем утеплении .

Так же вы можете выполнить самостоятельно теплотехнический расчёт онлайн

Записки проектировщика

Современные технологии проектирования и строительства зданий

Пример теплотехнического расчёта стены по СП 50.13330.2012

В рамках этой статьи приведу пример теплотехнического расчёта наружной стены здания общеобразовательной школы (фасадной системы Cuuber) по СП 50.13330.2012 (Приложение Е). Такие конструкции очень распространены в Москве и Московской области.

В данном случае крепление фасадной системы осуществляется не в пояса перекрытий, а в специально предназначенные для этого железобетонные выступы. Железобетонная плита и выступы армированы стальной арматурой. Ситуацию немного спасают термовкладыши в местах крепления. Но эти термовкладыши есть не везде. В нашем случае рама установлена в утеплитель и нахлёста утеплителя нет. Поэтому здесь по теплотехнике ситуация довольно сложная.

Наружная стена 1-го этажа с ж/б выше отм.+0.300 толщиной ж/б 200 мм, утеплённая минераловатными плитами с элементами крепления утеплителя, оконных откосов. Общая толщина теплоизоляционного слоя из минераловатных плит составляет 150 (100+50) мм.

Теплотехническими неоднородностями являются:

  • оконные откосы
  • узел сопряжения плиты перекрытия (перфорация 4:1) со стеной,
  • Точечные неоднородности:
  • Крепления теплоизоляции, условно принятые как тарельчатые анкеры с расстоянием от края стального распорного элемента до тарелки дюбеля до 2мм (таблица Г4 СП 230.1325800.2015 с изм.1), среднее количество на 1кв.м. фасада – 10шт.
  • крепления оконных откосов – 2шт/м 2 .
  • Крепление элементов конструкции к плитам перекрытий – стальные распорные распорные анкеры – 6шт/м 2 .

За расчётный фрагмент принята конструкция – Наружная стена 1-го этажа с ж/б выше отм.+0.300 с откосами светопрозрачных конструкций, минераловатным утеплением, элементами крепления утеплителя, оконных откосов.

Условное сопротивление теплопередаче R усл , (кв.м.°С/Вт) определим по формуле E.6 СП 50.13330.2012:

где αв – коэффициент теплоотдачи внутренней поверхности ограждающих конструкций, Вт/(кв.м.°С), принимаемый по таблице 4 СП 50.13330.2012

αн – коэффициент теплоотдачи наружной поверхности ограждающей конструкций для условий холодного периода, принимаемый по таблице 6 СП 50.13330.2012

αн=12 Вт/(кв.м.°С) -согласно п.3 таблицы 6 СП 50.13330.2012 для наружных стен с вентилируемым воздушным зазором.

R усл =1/8.7+0.2/2.04+0.1/0.0 41+ 0,05/0,04+1/12

R усл =3,985м 2 °С/Вт

Ro ст1 = 3,985кв.м.·°С/Вт – плоский элемент 1

U1 = 1 / 3,985 = 0,251 Вт/кв.м.× о С

Линейный элемент

  1. оконные откосы. Длина проекций оконного откоса: 237,45 м

Длина проекции откосов, приходящаяся на 1 кв.м.площади фрагмента 0,2м/кв.м.

Удельные потери теплоты ψ, Вт/(м о С) для узла примыкания оконного блока к стене.

ψ = 0,121 Вт/(м о С) принят по таблице Г34 СП230.1325800.2015 при следующих условиях:

Rут = 3,689 кв.м.·◦С/Вт. Нахлёста утеплителя нет. Рама сдвинута в утеплитель.

2.сопряжение с плитой перекрытия

Длина проекции: 230 м. Длина проекции, приходящаяся на 1 м 2 площади фрагмента 0,13 м/м 2

Удельные потери теплоты ψ = 0,35Вт/ м о С принимаем по расчёту температурного поля.

Точечные элементы

  1. Удельный геометрический показатель 10 шт/кв.м. тарельчатые анкера для крепления утеплителя

Удельные потери теплоты χ = 0,006 Вт/ о С принимаем по таблице Г.4 СП230.1325800.2015.Для крепления теплоизоляции приняты тарельчатые анкеры с расстоянием от края стального распорного элемента до тарелки дюбеля до 2мм (таблица Г4 СП 230.1325800.2015).

  1. Удельный геометрический показатель 2 шт/кв.м. крепление оконных откосов

Удельные потери теплоты χ = 0,006 Вт/ о С дюбель со стальным сердечником (таблица Г4 СП 230.1325800.2015 с изм.1).

3.Крепление опорного профиля осуществляется металлическими кронштейнами, среднее количество на 1м 2 фасада – 6шт. К расчёту принимаем кронштейн из коррозионностойкой стали с площадью сечения менее 250мм.

Элемент конструкцииУдельный геометрический показательУдельные потери теплотыУдельный поток теплоты%
Плоский элемент 11кв.м.0,251 Вт/м.×оС0,25148,93
Линейный элемент 10,2 м/кв.м.0,121 Вт/м.×оС0,0244,68
Линейный элемент 20,13м/кв.м.0,35 Вт/м.×оС0,0468,97
Точечный элемент 110 шт/кв.м.0,006 Вт/оС0,0611,7
Точечный элемент 22 шт/кв.м.0,006 Вт/ оС0,0122,34
Точечный элемент 36 шт/кв.м.0,020 Вт/м2×оС0,1223,39
0,513

Rпр = 1/ 0,513 = 1,95 кв.м.×°С/Вт (Rн= 2,99 ·0,63 = 1,88 кв.м.×°С/Вт).

r = 0,251 / 0,513= 0,489

Вывод: величина приведённого сопротивления теплопередаче R пр больше нормируемого значения. Следовательно, представленная ограждающая конструкция соответствует требованиям по теплопередаче.

Пример теплотехнического расчёта стены сделан в нашем программном обеспечении, но отчёт выдан по Приложению Е СП 50.13330.2012.

Расчет коэффициентов теплопередачи онлайн

При расчете теплообменных аппаратов, анализе теплового баланса работающего оборудования, оценке тепловых потерь ирешении многих других задач теплообмена, часто необходимо рассчитать тепловой поток, проходящий через твердую стенку, разделяющую жидкости или газы при различных температурах, который в простейшем случае вычисляется по формуле:

K – коэффициент теплопередачи;

Tf1 , Tf2 – температуры жидкости или газа между которыми происходит теплообмен

Как видно, наибольшую сложность здесь представляет определение коэффициента теплопередачи k, который зависит от физических свойств теплоносителя, режима течения и коэффициента теплопроводности твердой стенки. Коэффициент теплопередачи плоской стенки можно выразить через коэффициенты теплоотдачи поверхностей стенки:

α1 , α2 – коэффициенты теплоотдачи поверхностей стенки;

λ – коэффициент теплопроводности стенки;

δ – толщина стенки;

Вычислив коэффициенты теплоотдачи, на данной странице можно рассчитать тепловой поток, передаваемую мощность, коэффициент теплопередачи и температуру плоской или цилиндрической стенки.

Расчет теплопередачи через плоскую стенку

Исходные данные:

H – толщина стенки, миллиметрах;

S – площадь стенки, метрах 2 ;

Tfa – температура среды А, в °C;

αa – коэффициент теплоотдачи поверхности А, в ватт/метр 2 ×°C;

Tfb – температура среды B, в °C;

αb – коэффициент теплоотдачи поверхности B, в ватт/метр 2 ×°C.

ТЕПЛОПЕРЕДАЧА ЧЕРЕЗ ПЛОСКУЮ СТЕНКУ

Толщина стенки, H, мм

Площадь стенки, S, м 2

Теплопроводность стенки λ, Вт/(м* 0 C×сек)

Температура среды А, Т, 0 С

Коэффициент теплоотдачи, αа, Вт/м 2 * 0 С

Температура среды B, Тfb, 0 С

Коэффициент теплоотдачи, αb, Вт/м 2 * 0 С

Коэффициент теплопередачи К, Вт/м 2 * 0 С

Тепловой поток Q, Вт/м 2

Передаваемая мощность Р, Вт

Температура стенки Тwa, 0 С

Температура стенки Тwb, 0 С

©Copyright Кайтек 2020

Коэффициент теплопередачи:
Тепловой поток:
Передаваемая мощность:
Температура стенки А:
Температура стенки B:

Расчет теплопередачи через цилиндрическую стенку

Расчет теплопередачи через цилиндрическую стенку выполняется аналогичным образом, за исключением вычисления теплового потока непосредственно в стенке из-за разности площадей внутренней и наружной поверхности циллиндра. Коэффициент теплопередачи и тепловой поток здесь рассчитываются относительно длины трубы.

Исходные данные:

D1 – внутренний диаметр трубы, миллиметрах;

D2 – внешний диаметр трубы, миллиметрах;

L – длина трубы, в миллиметрах;

Tfa – температура среды внутри трубы, в °C;

αa – коэффициент теплоотдачи внутренней поверхности трубы, в ватт/метр 2 ×°C;

Tfb – температура среды снаружи трубы, в °C;

αb – коэффициент теплоотдачи наружной поверхности трубы, в ватт/метр 2 ×°C.

ТЕПЛОПЕРЕДАЧА ЧЕРЕЗ СТЕНКУ ТРУБЫ

Внутренний диаметр трубы, D1, мм

Наружный диаметр трубы, D2, мм

Общая длина трубы, L, мм

Теплопроводность стенки λ, Вт/(м* 0 C×сек)

Температура среды внутри трубы, Т, 0 С

Коэффициент теплоотдачи, αа, Вт/м 2 * 0 С

Температура среды снаружи трубы, Тfb, 0 С

Коэффициент теплоотдачи, αb, Вт/м 2

Коэффициент теплопередачи К, Вт/м* 0 С

Тепловой поток Q, Вт/м

Передаваемая мощность Р, Вт

Температура внутренней поверхности стенки Тwa, 0 С

Температура наружной поверхности стенки Тwb, 0 С

Теплотехнический расчет стен из различных материалов

Среди многообразия материалов для строительства несущих стен порой стоит тяжелый выбор. Сравнивая между собой различные варианты, одним из немаловажных критериев на который нужно обратить внимание является “теплота” материала. Способность материала не выпускать тепло наружу повлияет на комфорт в помещениях дома и на затраты на отопление. Второе становится особенно актуальным при отсутствии подведенного к дому газа.

Теплозащитные свойства строительных конструкций характеризует такой параметр, как сопротивление теплопередаче (Ro, м²·°C/Вт).

По существующим нормам (СП 50.13330.2012 Тепловая защита зданий. Актуализированная редакция СНиП 23-02-2003), при строительстве в Самарской области, нормируемое значение сопротивления теплопередачи для наружных стен составляет Ro.норм = 3,19 м²·°C/Вт. Однако, при условии, что проектный удельный расход тепловой энергии на отопление здания ниже нормативного , допускается снижение величины сопротивления теплопередачи, но не менее допустимого значения Ro.тр =0,63·Ro.норм = 2,01 м²·°C/Вт.

В зависимости от используемого материала, для достижения нормативных значений, необходимо выбирать определенную толщину однослойной или конструкцию многослойной стены. Ниже представлены расчеты сопротивления теплопередаче наиболее популярных вариантов конструкций наружных стен.

Расчет необходимой толщины однослойной стены

В таблице ниже определена толщина однослойной наружной стены дома, удовлетворяющая требованиям норм по теплозащите.Требуемая толщина стены определена при значении сопротивления теплопередачи равном базовому (3,19 м²·°C/Вт). Допустимая – минимально допустимая толщина стены, при значении сопротивления теплопередачи равном допустимому (2,01 м²·°C/Вт).

№ п/пМатериал стеныТеплопроводность, Вт/м·°CТолщина стены, мм
ТребуемаяДопустимая
1Газобетонный блок0,14444270
2Керамзитобетонный блок0,5517451062
3Керамический блок0,16508309
4Керамический блок (тёплый)0,12381232
5Кирпич (силикатный)0,7022211352

Вывод: из наиболее популярных строительных материалов, однородная конструкция стены возможна только из газобетонных и керамических блоков. Стена толщиной более метра, из керамзитобетона или кирпча, не представляется реальной.

Расчет сопротивления теплопередачи стены

Ниже представлены значения сопротивления теплопередаче наиболее популярных вариантов конструкций наружных стен из газобетона, керамзитобетона, керамических блоков, кирпича, с отделкой штукатуркой и облицовочным кирпичом, утеплением и без. По цветной полосе можно сравнить между собой эти варианты. Полоса зеленого цвета означает, что стена соответствует нормативным требованиям по теплозащите, желтого – стена соответствует допустимым требованиям, красного – стена не соответствует требованиям

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector